• Empleos
  • Sobre nosotros
  • profesionales
    • Inicio
    • Empleos
    • Cursos y retos
  • empresas
    • Inicio
    • Publicar vacante
    • Nuestro proceso
    • Precios
    • Evaluaciones
    • Nómina
    • Blog
    • Comercial
    • Calculadora de salario

0

225
Vistas
ImportError: cannot import name 'BatchNormalization' from 'keras.layers.normalization'

i have an import problem when executing my code:

from keras.models import Sequential
from keras.layers.normalization import BatchNormalization
2021-10-06 22:27:14.064885: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'cudart64_110.dll'; dlerror: cudart64_110.dll not found
2021-10-06 22:27:14.064974: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
Traceback (most recent call last):
  File "C:\Data\breast-cancer-classification\train_model.py", line 10, in <module>
    from cancernet.cancernet import CancerNet
  File "C:\Data\breast-cancer-classification\cancernet\cancernet.py", line 2, in <module>
    from keras.layers.normalization import BatchNormalization
ImportError: cannot import name 'BatchNormalization' from 'keras.layers.normalization' (C:\Users\Catalin\AppData\Local\Programs\Python\Python39\lib\site-packages\keras\layers\normalization\__init__.py)
  • Keras version: 2.6.0
  • Tensorflow: 2.6.0
  • Python version: 3.9.7

The library it is installed also with

pip install numpy opencv-python pillow tensorflow keras imutils scikit-learn matplotlib

Do you have any ideas?

library path

over 3 years ago · Santiago Trujillo
2 Respuestas
Responde la pregunta

0

You're using outdated imports for tf.keras. Layers can now be imported directly from tensorflow.keras.layers:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import (
    BatchNormalization, SeparableConv2D, MaxPooling2D, Activation, Flatten, Dropout, Dense
)
from tensorflow.keras import backend as K


class CancerNet:
    @staticmethod
    def build(width, height, depth, classes):
        model = Sequential()
        shape = (height, width, depth)
        channelDim = -1

        if K.image_data_format() == "channels_first":
            shape = (depth, height, width)
            channelDim = 1

        model.add(SeparableConv2D(32, (3, 3), padding="same", input_shape=shape))
        model.add(Activation("relu"))
        model.add(BatchNormalization(axis=channelDim))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))

        model.add(SeparableConv2D(64, (3, 3), padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(axis=channelDim))
        model.add(SeparableConv2D(64, (3, 3), padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(axis=channelDim))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))

        model.add(SeparableConv2D(128, (3, 3), padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(axis=channelDim))
        model.add(SeparableConv2D(128, (3, 3), padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(axis=channelDim))
        model.add(SeparableConv2D(128, (3, 3), padding="same"))
        model.add(Activation("relu"))
        model.add(BatchNormalization(axis=channelDim))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Dropout(0.25))

        model.add(Flatten())
        model.add(Dense(256))
        model.add(Activation("relu"))
        model.add(BatchNormalization())
        model.add(Dropout(0.5))

        model.add(Dense(classes))
        model.add(Activation("softmax"))

        return model

model = CancerNet()
over 3 years ago · Santiago Trujillo Denunciar

0

You should import BatchNormalization in following way:

from tensorflow.keras.layers import BatchNormalization
over 3 years ago · Santiago Trujillo Denunciar
Responde la pregunta
Encuentra empleos remotos

¡Descubre la nueva forma de encontrar empleo!

Top de empleos
Top categorías de empleo
Empresas
Publicar vacante Precios Nuestro proceso Comercial
Legal
Términos y condiciones Política de privacidad
© 2025 PeakU Inc. All Rights Reserved.

Andres GPT

Recomiéndame algunas ofertas
Necesito ayuda